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LETTER TO THE EDITOR 

Log-concave functions and convex interaction terms for 
quantised fields 

Jan Tarski 
Fakultat fur Physik, Universitat Bielefeld, 48 Bielefeld 1, FDR 

Received 16 February 1977 

Abstract. One considers those models of quantised fields for which the interaction 
Hamiltonians, with counter terms included, are convex functions of the fields. Some simple 
properties of these models (and of related ones) are obtained with the help of the theory of 
log-concave functions. In particular, the form of ground-state functionals is specified. 

1. Introduction 

In two recent articles Brascamp and Lieb (1975,1976)developed various properties of 
log-concave functions. They discussed applications in particular to the one- 
dimensional Coulomb plasma and to the Ising model. In the present letter we should 
like to indicate the usefulness of these functions for the study of certain models of 
quantum field theory. 

The models in question are those for which the interaction Hamiltonian Hi,, is a 
convex function (or functional) of the fields. This means that Hi,, without counter 
terms, or renormalisation terms, must be convex, and that the counter terms must not 
upset the convexity. (We consider only boson fields without derivative couplings, and 
then the fields at a fixed time can be regarded as numerical entities.) 

Aside from free fields, there are three classes of models which satisfy the foregoing 
criterion of convexity. 

(i) The Hoegh-Krohn model, where the coupling is constructed as a superposition 
of exponentials in two dimensions (cf Hgegh-Krohn 1971, Simon 1974 for further 
details). In this model the counter terms combine to yield an overall multiplicative 
effect. In fact, for a single exponential one has, formally 

:ecQ:-ZeCQ, z - exp( - fc '(4 (o) ' )~) .  (1) 
(For a field with ultraviolet cut-off, Z, > 0 and ecdw is convex, hence :ecd* : is also convex, 
and this property will survive as K + CO.) 

(ii) The quadratic interaction in any number of dimensions (cf Ginibre and Vel0 
1970, Rosen 1972). 

(iii) Models with ultraviolet cut-offs and without counter terms, with exponential or 
convex polynomials or other convex couplings. 

The convexity property remains valid if we introduce non-negative functions which 
yield spatial cut-offs. We assume, besides convexity, that Hi,, is an even function of 4, 
and that the free Hamiltonian H(O) has a non-zero mass. Some additional assumptions 
about the models will be introduced later in this letter. 
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For the models with a spatial cut-off we will deduce the form of equation (9) given 
later for the ground-state functionals. Moreover, we discuss briefly the characteristic 
functionals of fixed-time measures, the analyticity of these functionals, and the removal 
of spatial cut-off. 

In the text we will refer also to models defined by total Hamiltonians of the following 
kind (cf Coester and Haag 1960, Tarski 1969, 1972a): 

I I = A ' ~ ) + A ~  =A'O'+l d3u[(4 *h)(u)12"g(u),  (2b 1 

/ d3u1 d 3 u 2 A ( o ) ( u 1 - u 2 ~ ( u t ~ ( u 2 ) ,  (2c 1 A@) = 
2(2.rr 13/* 

and A ( O )  has the Fourier transform I(')@) = (p2 + M 2)1/2. We will refer to these models 
as A-models. The counter terms are those associated with the Wick ordering of I#'), 
and the functions g, h E Y (g 2 0) provide a spatial and an ultraviolet cut-off for 
interactions, respectively. 

Here Hi,, is not in general a convex function of 4. However, for the ground-state 
functional we have the expression 

qo(() = (constant) exp(-A'"(C)- AI(()), (3 1 
and so qo has already the form of equation (9). For the A-models, the properties of 
log-concave functions allow a simplified derivation of the basic inequalities. 

2. Summary concerning log-concave functions 

These are the functions of the form where K is convex (so that -K is concave). 
For example, let K ( x ) = ( x , A x )  with A 30. The possibility K =  +a, e-K =0, is 
admitted. The following properties of log-concave functions, defined for x ER", are 
basic. For the proofs of (a) and ( b ) ,  see Brascamp and Lieb (1975,1976). All integrals 
that we write are assumed to exist. 

(a) The product and the convolution of log-concave functions are log-concave. 
Moreover, if W is Gaussian on R"+" and if we set 

Iz(x)jdmy W ~ , Y ) = [ ~ ' " Y  

I d x )  = d"y F(x, Y ), 
(4) 

then (F is log-concave on R "+" +each 4 is log-concave). 

exp(-tV)E LI  for all t > 0: 
(6) Consider the following potential V on R", where K is convex, and where 

V ( x )  = h 2 x 2  +K(x) ,  a b o .  ( s a )  

$o(x)  = exp( - lax ')F(x ). 

Then the ground-state wavefunction $0 for the operator -dV'+ V has the following 
form, with F log-concave: 

(56 1 
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( c )  We call anyg: R" + R 1  even if g(x)= g(-x), and we say thatf+: R'+ R' iseven 
non-decreasing if in addition 

f+Otl)Gf+(Y2) when l y l l ~ l y ~ l .  (6a 1 
Let W, U: R" +RI,  where W is fixed and U varies. We write, for h :  R" + R ', 

-1 

(h)U = I d"x W(x)U(x)h(x ', . . .)(I d"x W(x)U(x)) . 

Let 2f,(y) =f(y)*f(-y). If W is Gaussian and G is even and log-concave, and 
f: R ' + R is such that f+ is even non-decreasing, then it is immediate (in view of (4); cf 
also lemma 1 of Tarski 1972a) that 

(f->G = 0, (f+>G = (f>G (f>l. (7) 
Note that an even log-concave function on R' is even non-increasing. (For even 
log-concave functions on R", this holds for the restriction to any line through the 
origin.) 

(d) Assume G, W as before and G = e-AK. From (7) we obtain by differentiation 

( f W 1  3 (f)l(K)l. (8 )  
This is a Griffiths (1967) inequality obtained under an (apparently) new set of 
assumptions, which we recapitulate: the weight W Gaussian, K even convex, f: R + 
R such that f+ is even non-decreasing. 

All these conclusions generalise directly to infinite-dimensional integrals. In par- 
ticular, it is natural to employ generalised invariant measures (Tarski 1972b) in this 
context. Then in the case of Gaussian integrals, a Gaussian weight plays a role 
analogous to a finite-dimensional Gaussian (hence log-concave) factor. This cir- 
cumstance was exploited in Brascamp and Lieb (1975, 1976) in the arguments leading 
to equation (56). 

3. Tbe form of ground-state function& 

The analysis of the A-models has shown that detailed information about ground-state 
functionals can be quite useful. We therefore attempt to generalise (5 )  to quantised 
fields. These relations suggest that for convex Hi,, (cf equation (3)), 

WOW = exp(-A'O'(0)F(t), F log-concave, .f E %. (9) 
The Hilbert space X is real and is determined by 

This functional can combine with a generalised invariant measure to yield an 
(ordinary) measure for computing equal-time expectations, in analogy to the case 
of t,ho of (56) (cf Tarski 1969, 1972a). For the free-field case, dp("(7)- 
B(7) ex~(-2A(~)(v)). (We do not write 'equal to', since the two objects are conceptu- 
ally different.) 

We can establish the form (9) under the following additional assumptions: ( U )  the 
cut-offs allowHi,t to be represented as an operator on the Fock space, and &')+Hint is 
essentially self-adjoint; (6)  the lowest eigenvalue EO of the self-adjoint extension H,, 
is isolated. 

These assumptions are fulfilled for the Hgegh-Krohn model. For quadratic interac- 
tions we may need an ultraviolet cut-off together with a spatial cut-off. However, for 

as the norm. 
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these interactions *O is a Gaussian, i.e. it has approximately the form (3) with Al 
quadratic, and the removal of either cut-off can be readily controlled (see Ginibre and 
Velo 1970, Rosen 1972). 

In view of (a), we can exploit the free Euclidean measure pE as in Simon (1974, 
chaps 3 and 5 ) .  In particular, Trotter's formula (e.g. Reed and Simon 1972) allows a 
justification of 

One also sees as in Simon (1974, p 163ff) that Eo is non-degenerate, and that the ground 
states \V(O) and Yo  of H(O) and Htotal respectively satisfy (Y"), Yo) = a # 0. 

The proof of ( 5 b )  in Brascamp and Lieb (1976) makes use of the Green function for 
8, - iVv2+ V. The analogous Green functionals in field theory are difficult to handle 
rigorously, and we avoid them through the following device. We decompose pE in a 
manner suggested by Tarski (1971, 09 5 and 6) to obtain from ( loa)  

[exp(-t~,,~,1)q"~'I(5) 

= W O  df 

The integral over 7 2  yields an additional factor yT(o)(ql), so that one recovers dpuo'(ql). 
The measure pr is Gaussian, and the arguments of Brascamp and Lieb (1975, 1976) 
show that a, has a form such as in (9). Let us decompose a, as ae-Eorqo+Wl, ,  with 
(To, q1,,) = 0 (cf above). Then erEoSZ, -* a q o  as t -* M, and so Po also has the form (9). 

With regard to the smoothness of F in (9), we note here only that F is pco)- 
measurable. For a more detailed investigation into the smoothness and positivity of 
ground-state functionals, see Albeverio and Hpregh-Krohn (1975). 

In the foregoing we used the evenness of HI,, only to justify easily the formulae 
involving functional integration for The form (9) is also valid for non-even (but 
convex) H,,, which are bounded from below, but even this semi-boundedness is not 
necessary. 

4. Characteristic functionals and their analyticity 

The present section is based on the assumption of the form (9) for qo, with F even. (This 
is a consequence of evenness of Hint.) Let us suppose for the moment that ~ O E  XaOw. 
Then we introduce the measure dp -9(q)1Po(q)(2 (continuous with respect to dp")) 
and its characteristic functional, where z E C', 

C(zcy) = dp(q )  er(".a) = dp(O)(q)F2(q) er("*a). (11) 

(Note that cy E % but za E X+ iX.) By using (7) and by arguing as in Tarski (1969) we 
conclude that 

IC(i4--C(iP)I 6 (2/..)'/'ll& -P)llz, (12) 
where B is the (bounded) operator of multiplication in p space by 2-1'2(p2 + m 2)-1/4. 
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The last inequality allows us To eliminate the spatial cut-off by selecting a suitable 
sequence of cut-off functions, and to obtain a Euclidean invariant theory, as in Tarski 
(1969). Then the measure Y associated with such a limiting theory is a weak (or 
‘narrow’) limit of the measures p, and in view of the discussion in Tarski (1972a, p 18% 
the following conclusions apply also to Y. 

By comparing C(za)  with the corresponding quantity for the free theory and for z 
real (cf (7) again), we conclude that C(za)  is an entire function of z,  of order at most 2. 
This analyticity leads directly to the assertion: C@) is analytic when p varies m e r  the 
space X+iX, To prove this, the following criterion for analyticity of a functional S@) 
defined on a complex Banach space is convenient (Field 1974): S is analytic if it is 
continuous and if its restriction to each complex line is analytic as a map C’ + C’. 

Thus the remaining task is to verify the continuity of C. We set a = a l  + iaz,  
p = + ip2, and we use the estimate 

Ie(’**)-e(’~’)ls (l(s, al-pl)l+l(q, a 2 - p 2 ) l ) ( e ( ’ ~ * ~ ) + e ( ’ ~ ’ ~ )  ). (13) 
Schwartz’ inequality and an argument such as the one leading to (12) now allow us to 
conclude that IC(a)- C@)I can be majorised by an expression which is proportional to 
ZjllB(aj -p j ) l l 2 .  Thus continuity and also analyticity follow. 

Acknowledgments 

The author thanks Professor P Stichel and the Physics Department in  Bielefeld for 
hospitality, and Deutsche Forschungsgemeinschaft for support. 

References 

Albeverio S and H~egh-Krohn R 1975 University of Oslo Preprint ISBN 82-553-0246-8-Mathematics, No. 
20 

Brascamp H J and Lieb E H 1975 Functional Integration and its Applications, ed. A M Arthurs (London: 
Oxford University Press) p 1 

- 1976 1. Funct. Analysis 22 366 
Coester F and Haag R 1960 Phys. Rev. 117 1137 
Field M J 1974 Global Analysis and its Applications vol. 2 (Vienna: International Atomic Energy Agency) 

Ginibre J and Velo G 1970 Commun. Math. Phys. 18 65 
Griffiths R B 1967 J.  Math. Phys. 8 478,484 
Hgegh-Krohn R 1971 Commun. Math. Phys. 21 244 
Reed M and Simon B 1972 Methods of Modern Mathematical Physics, vol. 1 (New York: Academic Press) 

Rosen L 1972 J. Math. Phys. 13 918 
Simon B 1974 The P(4)2 Euclidean (Quantum) Field Theory (Princeton, NJ: Princeton University Press) 
Tarski J 1969 Ann. Inst. Henri Poincari A 11 131 
- 1971 Ann. Inst. Henri Poincark A 15 107 
- 1972a Ann. Inst. HenriPoincari A 17 171 
- 1972b Ann. Inst. Henri Poincari A 17 313 

p 189 

p 297 


